A large-scale forest landscape model incorporating multi-scale processes and utilizing forest inventory data
نویسندگان
چکیده
Two challenges confronting forest landscape models (FLMs) are how to simulate fine, standscale processes while making large-scale (i.e., .10 ha) simulation possible, and how to take advantage of extensive forest inventory data such as U.S. Forest Inventory and Analysis (FIA) data to initialize and constrain model parameters. We present the LANDIS PRO model that addresses these needs. LANDIS PRO adds density and size mechanisms of resource competition. This is achieved through incorporating number of trees and DBH by species age cohort within each raster cell. Forest change is determined by the interactions of species-, stand-, and landscape-scale processes. Species-scale processes include tree growth, establishment, and mortality. Stand-scale processes include density and size-related resource competition that regulates self-thinning and seedling establishment. Landscape-scale processes include seed dispersal, as well as natural and anthropogenic disturbances. LANDIS PRO is designed to be straightforwardly comparable with forest inventory data, and thus the extensive FIA data can be directly utilized to initialize and constrain model parameters before predicting future forest change. We initialized a large landscape (;10 ha) from historical FIA data (1978) and the predicted forest structure and composition following 30 years of simulation were statistically calibrated against a prior time-series of sequential FIA data (1978 to 2008). The results showed that the initialized conditions realistically represented the historical forest composition and structure at 1978, and the constrained model parameters predicted reasonable outcomes at both landscape and land type scales. The subsequent evaluation of model predictions showed that the predicted forest composition and structure were comparable with old-growth oak forests; predicted forest successional trajectories were consistent with the expected successional patterns in oak-dominated forests in the study region; and the predicted stand development patterns were in agreement with the established theories of forest stand development. This study demonstrated a framework for forest landscape modeling including model initialization, calibration, and evaluation of predictions.
منابع مشابه
Evaluating simulated effects of succession, fire, and harvest for LANDIS PRO forest landscape model
Forest landscape models are effective tools for exploring the effects of long-term and large-scale landscape processes such as seed dispersal, fire, and timber harvest. These models have been widely used for about a decade, and although significant advances in theory and technology have been incorporated into their development, evaluating the veracity of simulated results from forest landscape ...
متن کاملEstimating Live Forest Carbon Dynamics with a Landsat-based Curve-fitting Approach
Direct estimation of aboveground biomass with spectral reflectance data has proven challenging for high biomass forests of the Pacific Northwestern United States. We present an alternative modeling strategy which uses Landsat’s spatial, spectral and temporal characteristics to predict live forest carbon through integration of stand age and site index maps and locally calibrated Chapman-Richards...
متن کاملCell Interaction in Semi-Markov Forest Landscape Models
Abstract: This paper describes a model for incorporating both spatial interactions and succession dynamics within a MOSAIC forest landscape model. MOSAIC uses semi-Markov processes to model the succession dynamics of a forest landscape. A landscape is partitioned into cells and the parameters defining the semiMarkov process associated with each cell are derived from individual tree-based models...
متن کاملModeling and spatially distributing forest net primary production at the regional scale.
Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area's ability to sequester carbon in terrestrial ecosystems. As the ecosystems within a landscape change due to natu...
متن کاملSize and frequency of natural forest disturbances and the Amazon forest carbon balance
Forest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.01 ha to 2,651 ha size throughout Amazonia using a novel combination of forest inventory, airborne lidar and ...
متن کامل